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[1] We develop a state-space Bayesian framework to combine time-lapse geophysical
data with other types of information for quantitative estimation of biogeochemical
parameters during bioremediation. We consider characteristics of end products of
biogeochemical transformations as state vectors, which evolve under constraints of local
environments through evolution equations, and consider time-lapse geophysical data as
available observations, which could be linked to the state vectors through petrophysical
models. We estimate the state vectors and their associated unknown parameters over time
using Markov chain Monte Carlo sampling methods. To demonstrate the use of the
state-space approach, we apply it to complex resistivity data collected during laboratory
column biostimulation experiments that were poised to precipitate iron and zinc sulfides
during sulfate reduction. We develop a petrophysical model based on sphere-shaped
cells to link the sulfide precipitate properties to the time-lapse geophysical attributes
and estimate volume fraction of the sulfide precipitates, fraction of the dispersed,
sulfide-encrusted cells, mean radius of the aggregated clusters, and permeability over the
course of the experiments. Results of the case study suggest that the developed state-space
approach permits the use of geophysical data sets for providing quantitative estimates of
end-product characteristics and hydrological feedbacks associated with biogeochemical
transformations. Although tested here on laboratory column experiment data sets, the
developed framework provides the foundation needed for quantitative field-scale estimation
of biogeochemical parameters over space and time using direct, but often sparse wellbore
data with indirect, but more spatially extensive geophysical data sets.
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1. Introduction

[2] In-situ contaminant remediation treatments are being
used to facilitate reactions that degrade or immobilize
contaminants in the subsurface, rendering them less hazard-
ous to human and ecological health [e.g., Hazen and Tabak,
2005]. These remediation treatments induce various biogeo-
chemical reactions, such as the dissolution and precipitation
of minerals, gas evolution, changes in total dissolved solids,
and biofilm generation. Direct aqueous geochemical meas-
urements obtained using wellbore groundwater samples are
typically used to assess the efficacy of the remedial treat-
ments [e.g., Lovley et al., 1994; Chapelle, 2001]. However,
given the spatially variable distribution of remediation
treatments introduced into the subsurface and the complex-
ity of the subsequent biogeochemical reactions [Scheibe et
al., 2006], it is often difficult to assess the efficacy of
remediation treatments over time and space with reasonable

confidence using wellbore measurements alone [Hubbard et
al., 2008]. In addition, it is challenging to directly measure
the evolution of solid phase transformations (such as the
generation of precipitates) using conventional wellbore-
based sampling approaches.
[3] Time-lapse geophysical methods hold potential for

providing information about remediation-induced biogeo-
chemical changes in a cost-effective and minimally invasive
manner because they are often sensitive to changes in pore
fluid and matrix properties associated with the induced
biogeochemical transformations. Several biogeophysical
studies have been performed in recent years to test this
hypothesis [Atekwana et al., 2006]. For example, Williams
et al. [2005] performed a laboratory-scale biostimulation
experiment where time-lapse complex resistivity, seismic,
and various geochemical measurements were measured over
the length of the experimental columns during the experi-
ments. They showed that changes in complex resistivity and
seismic amplitude measurements corresponded to the onset
and spatial distribution of microbial-mediated iron and zinc
sulfide precipitation. High-frequency seismic wave ampli-
tudes were reduced by nearly 84%; within the context of a
double porosity model [Pride et al., 2004], the attenuation
was interpreted to be caused by the wave-induced flow
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resulting from the heterogeneous formation of high bulk
modulus sulfide precipitates within formerly fluid-filled
pore spaces. The phase response of the complex resistivity
data also tracked the spatiotemporal development of the
precipitates. In the frequency range used to collect the
complex resistivity measurements (0.1–1000Hz), the energy
storage reflected by the phase response results primarily from
the polarization of the ions in the electrical double layer at the
mineral-fluid interface and from the formation of electrically
conductive pathways accompanying the precipitation of
(semi) conductive minerals. As such, changes in the com-
plex resistivity response were attributed to alterations in
subsurface mineralogy arising from stimulated microbial
activity within the pore space, including precipitation
reactions, aggregation dynamics, and solid-state mineral
transformations.
[4] More recent studies have shown that time-lapse

geophysical methods can be useful for tracking remediation
processes at the field scale. Lane et al. [2006] used time-
lapse, crosshole, zero-offset radar data and electrical logs to
indicate subsurface regions impacted by injection of emul-
sified vegetable oil during a biostimulation experiment.
Hubbard et al. [2008] explored the use of geophysical data
sets for monitoring the distribution of electron donor and
subsequent transformations associated with a Cr(VI) bio-
remediation treatment. Using the constraints provided by
laboratory biogeochemical experiments and field geochem-
ical data sets, Hubbard et al. [2008] interpreted field-scale,
time-lapse seismic and radar tomographic data sets in terms
of hydrological and biogeochemical transformations associ-
ated with the remedial treatment over approximately 3-year
monitoring period, including the spatial distribution of
injected electron donor, gas bubble formation, variations in
total dissolved solids, and the formation of precipitates. The
integrated interpretation revealed how geophysical techni-
ques can provide information about coupled hydrobiogeo-
chemical responses to remedial treatments.
[5] Although both laboratory- and field-scale studies have

illustrated the potential of geophysical methods for providing
information about biogeochemical end products, the use of
geophysical data for this objective has to date been primarily
qualitative in nature. In this study, we develop a state-space
Bayesian estimation framework that permits rigorous inte-
gration of multiple types of time-lapse data sets (e.g.,
geophysical and geochemical) for quantitative estimation of
biogeochemical end products. The developed method is
subsequently applied to the laboratory biostimulation data

sets of Williams et al. [2005] to demonstrate the utility of
time-lapse complex resistivity data for remotely estimating
the evolution of volume fraction of metal sulfides and their
associated parameters. Although we test the developed
estimation framework by applying it to measurements col-
lected over time at a single location within an experimental
column, the methodology can be extended to larger, multi-
dimensional data sets and regions.
[6] The remainder of this paper is organized as follows.

Section 2 describes the state-space Bayesian framework for
estimation of biogeochemical transformations and methods
for obtaining solutions from the Bayesianmodel. In section 3,
we apply the developed method to laboratory column experi-
ments. The estimation results are given in section 4 and
discussion and conclusions are provided in section 5.

2. State-Space Bayesian Framework

[7] In this section, we describe a general state-space
approach for estimation of end products associated with
biogeochemical transformations using time-lapse geophys-
ical data and other types of information, such as direct and
indirect measurements of geochemical or biogeochemical
parameters.

2.1. Dynamic System

[8] We consider a typical bioremediation system as a
dynamic system in which numerous geochemical reactions
and biogeochemical processes may take place that are con-
trolled or affected by the local environment. As shown in
Figure 1, the dynamic system is described by a state vector
xi, which consists of some characteristics of biogeochemical
transformations at time ti. This state vector can include
properties that are helpful for ascertaining the system
response to the remedial treatments, such as concentrations
of electron donors or acceptors, or solid phase transforma-
tions such as the volume fraction of precipitates resulting
from microbial activity. The biogeochemical state vector
changes over time as the system evolves in response to the
remediation; the change can be described by the following
evolution equation.

xi ¼ Fðxi�1; q1Þ þ wi; ð1Þ

where F represents a biogeochemical process forward
model as a function of previous states, available geochem-
ical measurements at time ti, and an unknown time-invariant

Figure 1. Schematic map of the state-space Bayesian estimation framework.

2 of 15

W08420 CHEN ET AL.: STATE-SPACE BAYESIAN ESTIMATION FRAMEWORK W08420



parameter vector q1. Vector wi represents random errors
associated with the forward modeling.
[9] We can numerically obtain a series of state vectors

x1, x2, . . ., xn, by using equation (1) and starting from an
initial state of the system x0, such as the initial biogeochem-
ical conditions prior to bioremediation. Those state vectors
form a Markov chain because the state vector xi is condi-
tionally independent of the state vector xi�2, given the state
vector xi�1. Let f0 and fw be the probability distribution
functions of the initial state x0 and the error vector wi,
respectively. We can obtain the joint distribution of the
Markov chain as follows [Shumway and Stoffer, 2000].

f ðx0; x1; x2; � � � ; xnjq1Þ ¼ f0ðx0Þ
Yn
i¼1

fwðxi � Fðxi�1; q1ÞÞ: ð2Þ

2.2. Time-Lapse Geophysical Data
and Petrophysical Models

[10] Perhaps one of the most powerful aspects of environ-
mental geophysics is the use of geophysical data for moni-
toring dynamic processes. Observing the data in a time-lapse
mode (i.e., measurements collected at an earlier time sub-
tracted from those collected at a later time) enhances the
imaging of subtle changes in geophysical attributes caused by
system perturbations and reduces the correlated errors and the
dependence of geophysical measurements on the static geo-
logical heterogeneities [Day-Lewis et al., 2002; Vasco et al.,
2004].
[11] Here, rather than differentiating the time-lapse data

sets, we incorporate the geophysical data yi (such as
complex resistivity and seismic measurements) collected
at each time ti within the estimation framework (Figure 1).
If we let: G be the petrophysical model that relates geo-
physical data observed at time ti to the biogeochemical state
vector at the same time; q2 be the unknown time-invariant
parameter vector associated with the petrophysical model;
vi be the random error vector in the petrophysical model,
we can obtain

yi ¼ Gðxi; q2Þ þ vi: ð3Þ

Let fv be a probability distribution function of the error
vector vi. It is common to assume that errors in geophys-
ical data collected at different times are independent of
each other. We thus obtain the following likelihood func-
tion that relates the geophysical measurements to the
biogeochemical parameters that we desire to estimate.

f ðy1; y2; � � � ; ynjx0; x1; x2; � � � ; xn; q1; q2Þ ¼
Yn
i¼1

fvðyi � Gðxi; q2ÞÞ:

ð4Þ

2.3. Bayesian Estimation Framework

[12] Our goal is to quantitatively estimate the end-product
evolution associated with remediation-induced biogeochem-
ical transformations using direct borehole geochemical and
indirect geophysical data sets. As shown in Figure 1, we
specifically strive to estimate state vectors x0, x1, x2, . . ., xn,
and time-invariant parameters q1 and q2, given geophysical

data y1, y2, . . ., yn. We formulate the above problem within
the Bayesian framework. Using the Bayes’ theorem and
equations (2) and (4), we obtain the following joint poste-
rior distribution function.

f ðx0; x1; x2; � � � ; xn; q1; q2jy1; y2; � � � ; ynÞ

/ f0ðx0Þ f1ðq1Þ f2ðq2Þ
Yn
i¼1

fwðxi � Fðxi�1; q1ÞÞ fvðyi � Gðxi; q2ÞÞ;

ð5Þ

where symbol ‘‘/’’ represents ‘‘is proportional to’’, which
negates the use of a normalizing constant that does not
affect the solution to equation (5), and f1 and f2 represent
probability distributions of parameters q1 and q2, respectively.
As will be discussed in section 3.4, we can parameterize the
general Bayesian formulation given in equation (5) for a
specific biogeophysical estimation problem through specify-
ing: the prior probability distributions (f0, f1, and f2) of the
initial state vector x0, the time-invariant parameters q1 and q2,
the error probability distributions (fw and fv), and the forward
biogeochemical and petrophysical models (F and G).

2.4. Markov Chain Monte Carlo Sampling Methods

[13] The key to estimating the evolution of biogeochem-
ical parameters using geophysical data sets and the Bayesian
model defined in equation (5) is to obtain state vectors and
unknown time-invariant parameters. Since the forward and
petrophysical models F and G are often nonlinear, it is very
challenging to analytically solve the inverse problem. In-
stead, we use Markov chain Monte Carlo (MCMC) sampling
methods to draw many samples from the posterior joint
probability distribution function following the procedure
outlined by Chen et al. [2006]. With this approach, we obtain
many samples of the biogeochemical parameters of interest,
from which we can calculate statistics such as the medians,
mean values, and variances of those parameters.

3. Application to Laboratory Column
Experiments

[14] In this section, we formulate the developed state-
space estimation framework (equation (5)) to specifically
estimate parameters in connection with FeS and ZnS precip-
itates formed as a result of stimulated microbial activity using
time-lapse complex resistivity measurements. Although our
goal in this section is to demonstrate the use of the framework
for solving a specific biogeochemical transformation estima-
tion problem and to provide some insights into the utility of
time-lapse complex resistivity data in the estimation of
precipitation processes, we emphasize that the framework
developed here is general in nature and could be applied to a
variety of estimation problems.
[15] To test this framework, we use the data sets collected

during the biostimulation column experiments described by
Williams et al. [2005] and Ntarlagiannis et al. [2005]. We
first introduce the column experiment setup and the collected
time-lapse geochemical and geophysical data. We then
develop a petrophysical model to link the geochemical and
geophysical data sets. We finally use this information to
parameterize the general Bayesian framework (equation (5))
for this specific estimation problem.
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3.1. Laboratory Column Experiments

[16] The column experiments of Williams et al. [2005]
were designed to examine the geophysical response to
microbe-induced ZnS and FeS precipitation during a bio-
stimulation experiment performed using sulfate-reducing
bacteria. The experimental columns were instrumented
along their length with geophysical sensors, as well as with
biogeochemical fluid sampling ports. The experiments were
conducted under temperature-controlled conditions over a
period of 78 days using five polycarbonate columns having
inner diameters of 5.08 cm and lengths of 30.5 cm. Although
different columns were used to collect seismic, complex
resistivity and biogeochemical data sets and to serve as
abiotic control columns, care was taken to ensure that the
column packing, flow rates, and other experimental param-
eters were similar across the columns.
[17] Several pore volumes of lactate were flushed through

the water-saturated, sand packed system before the exper-
iment started, at which time the sulfate-reducing bacteria
Desulfovibrio vulgaris were introduced into the middle and
the nutrients were introduced into the bottom of the upward-
flowing column. From the multilevel sampling ports, spaced
3.8 cm along column length, sulfate reduction was moni-
tored over seven weeks, as indicated by decreasing substrate
and metals concentrations, increasing biomass, and visually
discernable regions of metal sulfide accumulation. The
region of sulfide mineral precipitation showed a shift toward
the influent (bottom) portion of the column over time as a
result of microbial chemotaxis toward elevated substrate
concentrations at the base of the column [Williams et al.,
2005]. Upon termination, the fluid sampling and geophysical
measurement columns were destructively evaluated; the
sediment samples were collected to determine grain-affixed
biomass, extractable metals, and to provide materials for
electron microscopy.
[18] Williams et al. [2005] showed that changes in seismic

and complex resistivity measurements tracked the onset,
spatial distribution, and aging of FeS and ZnS accumulation.
In addition, the scanning electron microscope (SEM) images
indicated that the biostimulation led to the aggregation of
sulfide-encrusted bacterial cells. In this study, we extend this
effort from a qualitative tracking of the system response using
geophysical measurements to a quantitative estimation of the
bioaggregated precipitate characteristics over time.

3.2. Geochemical Data and Evolution Model

[19] Several types of aqueous geochemical measurements
were collected over time during the course of the experiments.
The principal reaction taking place in the column involves the
microbially mediated oxidation of lactate to acetate while
reducing sulfate according to CH3CH(OH)COO

�+½SO4
2�!

CH3COO
�+½HS�+HCO3

�+½H+. Since the lactate and
sulfate concentrations are strongly correlated to the acetate
concentrations through the reaction stoichiometry, we only
show in Figure 2 the acetate concentrations (a byproduct
of lactate oxidation) measured at the sampling port located
3.8 cm from the column base in the experiments as a
function of time. The production rate of acetate according
to the stoichiometry shown above is in the proportion of
2:1 to the sulfide generated, the dissolved species that
drives the precipitation of both FeS and ZnS. In theory and
ideally, we could simulate FeS and ZnS precipitates

rigorously through numerical reactive transport modeling
of bioremediation processes based on those measured
aqueous geochemical data, but the chemotaxis of the
bacteria was a process that was beyond the capabilities
of the software at the time.
[20] For the column experiments of Williams et al.

[2005], we can estimate the volume fraction of FeS and
ZnS precipitates from the profiles of the measured total
dissolved Fe2+ and Zn2+ concentrations using a mass
balance method. For every mole of acetate produced, one
half mole of sulfide is generated, which then results in the
precipitation of sulfides according to the reactions Fe2+ +
S2�! FeSs, and Zn

2+ + S2�! ZnSs. For a column having a
steady flow, the mass change of an aqueous species (after
ignoring dispersion process) can be described byR =�fv(@C@x)
at steady state (@C@t = 0), where f is porosity, v is flow velocity,
R is the precipitation rate of the sulfide mineral phase,C is the
concentration of Fe or Zn in solution, and x is the distance
along the column from the base. According to this equation,
the loss rates of Fe(II) and Zn in the aqueous phase were
computed by dividing their corresponding concentration
differences by the distance between two consecutive sam-
pling ports.

Rj�1=2
¼ �fv

Cj � Cj�1

xj � xj�1

� �
: ð6Þ

Here Rj�1/2 is the reaction rate defined in the interval
between two discrete data points in space xj and xj�1, where
the aqueous concentrations Cj and Cj�1 are measured
[Steefel and Maher, 2009]. The FeS and ZnS accumulated
during given time intervals were calculated by multiplying
equation (6) by the time interval during the sampling
process. The accumulated FeS and ZnS calculated using
equation (6) matches well the amount of extractable FeS
and ZnSmeasured at the end of the experiment (see Figure 3).

Figure 2. Measured acetate concentrations over time from
the column experiments.
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The overall reaction stoichiometry outlined above is also
supported by the measurements of other redox-active species
(lactate, acetate, and sulfate) in the column, which are in the
proper proportions for the electron balance. This further
supports the validity of the use of the aqueous concentrations
to calculate mineral precipitation rates.
[21] The mass-balance-based estimation, however, is

practically impossible under field conditions because many
more processes are involved in the mass balance of Fe(II)
and Zn, and it is typically challenging to decouple these
different processes. For example, in addition to the process
of FeS precipitation, minerals such as iron oxide can absorb
Fe(II) on their surfaces. Since our ultimate goal of devel-
oping the estimation framework is to apply it to field data
sets, we assume that the direct estimates of FeS and ZnS
will not be available through this simple procedure, but that
we may be able to approximate the expected amount and
distribution of these mineral phases using more sophisticated
geochemical models, normally multicomponent reactive
transport models [Steefel and Maher, 2009]. The accuracy
of the approximation might range from simple qualitative
relationships to more sophisticated numerical reactive trans-
port modeling platforms, such as CrunchFlow [Steefel,
2008] and TOUGH-React [Xu et al., 2003], depending on
available information. As a result, for the purposes of this
study, we use the results obtained from the above mass
balance method as the ground truth for evaluating the
applicability and effectiveness of our state-space estimation
framework.
[22] For our application example, we use a simple qual-

itative relationship with a statistical model for describing
possible uncertainty to represent the geochemical evolution.
On the basis of the observation from the column experi-
ments, we assume that the increment in volume fraction of
metal precipitates is nonlinearly proportional to the concen-
trations of acetate. This assumption is not important and the
relationship can be replaced with a more sophisticated
numerical model as it becomes available. For now, this
approach is sufficient for testing the developed framework.
Let zt represent the increment of total acetate concentrations
from time t � 1 to time t and let pt and pt�1 represent

volume fraction of metal precipitates at time t and t � 1,
respectively. The increment of volume fraction thus can
be modeled using function B(zt, q1, q2) = q1(1� exp(�q2zt)),
where q1 and q2 are parameters associated with the model.
This empirical model is intuitively plausible because it is
consistent with the fact that the increment of volume fraction
increases with increasing of acetate concentrations and the
rate of increase in volume fraction decreases. Parameter q1 is
the limit of the increment of volume fraction, whereas
parameter q2 depends on the unit of acetate concentrations
and the increasing speed of volume fraction. To account for
uncertainty in the model, we assume that the two parameters
are known within some ranges and the output of the model is
subject to Gaussian relative random noise with standard
deviation of b1. Consequently, we obtain the following
statistical model that we use for this example to describe the
evolution of the precipitate volume fraction from time t� 1
to time t.

e1 ¼
ðpt � pt�1Þ � Bðzt; q1; q2Þ

Bðzt ; q1; q2Þ

 Nð0;b1Þ: ð7Þ

3.3. Complex Resistivity Data and Petrophysical Model

[23] The complex resistivity data were collected from
several locations along the length of the column and over
time by using frequencies from 0.01 Hz to 1000 Hz. In this
example, we focus only on the complex resistivity data
collected between ports 1 and 2, which correspond to the
length interval between 3.5 cm and 7.0 cm away from the
column base. Theoretically based models for predicting
spectral induced polarization (SIP) signatures in metal con-
taining soils are lacking, despite recent advances in semi-
theoretical modeling of SIP signatures in nonmetallic soils
[Leroy et al., 2008]. The one exception is the classic electro-
chemical model of Wong [1979]. He attributed the polariza-
tion in metallic soils when the metal is less than 10% of the
soil volume to diffusion of redox active and inactive ions that
are predominantly perpendicular to the metal surface under
an applied electric field and to an electrochemical mechanism

Figure 3. Comparison between the measured and calculated extractable (left) Fe and (right) Zn.
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associated with the redox active ions that facilitate transport
of charge between ionic and electronic conduction. In the
model, he also assumed no interaction between the electric
fields of the individual polarizable particles (i.e., the metallic
minerals), a condition that Wong [1979] stated was reason-
able for metal concentrations up to 16%. However, since the
theoretical model requires the definition of several (more
than eight) electrochemical parameters that are typically
poorly determined, no practical applications have been
presented in the peer-reviewed literature.
[24] Given the lack of easily applied theoretical models to

adequately describe the SIP response of soils containing
metallic minerals, phenomenological formulations, such as
the Cole-Cole relaxation model [Cole and Cole, 1941], are
often invoked [Pelton et al., 1978, 1983; Binley et al., 2005;
Slater et al., 2006]. Similar to those studies, the complex
resistivity data are first inverted for Cole-Cole model
parameters (e.g., chargeability and time constant) using
the stochastic inversion method developed by Chen et al.
[2008]. Figure 4 shows the real and imaginary components
of the measured complex resistivity data after inoculation as
well as their corresponding fits to Cole-Cole models.
Figures 5 and 6 give the medians and 95% predictive
intervals of the inverted chargeability normalized by zero-

Figure 4. Complex resistivity data (symbols) and their corresponding fits (solid curves) for Cole-Cole
models using the stochastic inversion method developed by Chen et al. [2008].

Figure 5. Time-lapse normalized chargeability data
(squares) and their corresponding fits (circles).
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frequency resistivity (referred to as normalized chargeabil-
ity) and time constant parameters from day 13 to day 48.
We did not get reliable estimates of Cole-Cole parameters
from the complex resistivity data collected on the date
earlier than day 13. We speculate that under the conditions
where geochemical (i.e., aqueous chemistry) conditions are
changing rapidly, Cole-Cole parameters may not adequately
capture changes in the complete spectral response.
[25] We develop a petrophysical model to link the inverted

Cole-Cole parameters to the properties of metal precipitates
based on the observations of the column experiments on the
date after day 13. From Figures 5 and 6, we can see that
the normalized chargeability, a nearly linear function of
the surface area of sulfide minerals in contact with water, is
decreasing through time while volume fraction of the pre-
cipitates suggested by the geochemical data (Figure 2) is
increasing through time. These observations perhaps are
different from the response of complex resistivity obtained
at early time because at early time, a single cell has an
increasing layer of sulfide on it and both surface area and
volume fraction increase over time. To explain the obser-
vations at the later time, we develop a rock-physics model of
cells aggregating into clusters, which provides the key
geometric parameters involved in modeling both permeabil-
ity and induced polarization (IP) responses of the sand
column. In the following, we conceptually describe the
petrophysical model and present the results that are directly
related to the inverted Cole-Cole parameters (i.e., normal-
ized chargeability and time constant). The detailed deriva-
tions are given in Appendix A. The developed model
involves many parameters, some of which can be approx-
imately determined from SEM images and some need to be
estimated during the inversion, which are also explicitly
given in the following description.
[26] We assume that the formation of metal precipitates

includes two main phases based on our observations from

the column experiments. Similar processes were also ob-
served by Moreau et al. [2004] under the natural conditions
where the concentration of aqueous metals (e.g., zinc) was
much lower. The early phase involves the coating of an
individual cell, that is, the bacterial cells in the system
produce sulfide mineral to the point that they become entirely
covered in a sulfide layer and ultimately die [Williams et al.,
2005]. The subsequent second phase involves the aggrega-
tion of individual coated biominerals, in which the dispersed
individual coated cells form clusters. Since we only have data
after 13 days of bioremediation, we assume the dominant
process involved in this example is the cell aggregation. For
ease of description, we assume that both cells and metal
sulfides are spherical, and the effects of deviations between
the actual shape and that of a sphere will be addressed by
some coefficients. As shown in Figure 7, all cells with a
sulfide coating are assumed to be initially dispersed (i.e.,
widely separated from one another). Over time, the dispersed
cells gradually aggregate into clusters, in the present simple
model, taking the form of spheres. We employ a face-
centered sphere packing approach to represent the aggrega-
tion, as is described in Appendix A. These spherical clusters
grow through the attachment of additional dispersed cells.
Since an isolated coated cell has a larger mineral-fluid surface
area than a cell attached to a cluster, the surface area of sulfide
will decline as long as the rate of cells attaching to clusters is
greater than the rate at which new dispersed cells are being
formed. This is the case in the column experiments as shown
byWilliams et al. [2005]. Given the near complete consump-
tion of lactate within the first 1.9 cm of the column by day 12,
this loss of the primary electron donor (lactate) severely

Figure 6. Time-lapse time constant data (squares) and
their corresponding fits (circles).

Figure 7. Schematic representation of FeS and ZnS pre-
cipitation for the induced polarization (IP) data inversion.
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limits subsequent microbial growth and cell division, thereby
minimizing the rate at which new dispersed cells are formed.
To account for the observation that total sulfide volume in the
pores increases over time, we also assume that the cells in a
cluster have a thicker layer of sulfide on them than do the
dispersed cells (i.e., hc � hd in Figure 7). To describe the
process, we define two key parameters: One is the volume
fraction of metal precipitates (pt) and the other is the fraction
of dispersed coated biominerals (wt). Both are functions of
time and will be estimated in the inversion.
[27] We can obtain an analytical relationship between

normalized chargeability (mt) and parameters pt, wt, and q3,
the latter of which is a coefficient that accounts for incom-
plete knowledge about the thickness of encrusted cells.
Within the model and under certain assumptions, we can
obtain the specific area St =G0(pt,wt, q3) (see equation (A4)).
Additionally, normalized chargeability (i.e., polarization
magnitude) has been repeatedly shown to scale with St in
laboratory studies conducted on both metallic soils [e.g.,
Slater et al., 2006] and nonmetallic soils [Scott and Barker,
2005; Slater et al., 2006]. Therefore we can assume that
normalized chargeability is proportional to specific surface
area, i.e.,mt = q4St =G1(pt,wt, q3, q4), where q4 is a parameter
that may partially account for disparity in the shapes between
spheres and actual ones and partially explain the ratios
between the specific area and chargeability. This is an
empirical based model, which is critical for the success of
our estimation because it links the IP responses to the
physical properties of geochemical precipitation. To consid-
er uncertainty in the model, we also assume the empirical
relationship is subject to relative Gaussian random errors
with the standard deviation of b2. This is a common
assumption for likelihood functions because the Gaussian
distribution is the most robust probability distribution for
characterizing errors, even the errors are non-Gaussian
[Stone, 1996]. Thus we obtain the following model.

e2 ¼
mobs

t � G1ðpt;wt; q3; q4Þ
mobs

t


 Nð0;b2Þ: ð8Þ

[28] We can also obtain an analytical formula to link time
constant (tt) to the fraction of dispersed biominerals (wt).
Time constant, describing the length scale of the relaxation
in IP responses, has been widely recognized as a function of
the pore or grain size characteristics of soils [e.g., Olhoeft,
1985; Chelidze and Gueguen, 1999] and therefore can be
linked to the mean radius of clusters formed from metal
precipitates. Schwartz [1962] showed that the function is
consistent with electrochemical theory for colloidal suspen-
sions, whereby we can tie time constant tt at time t to the
mean radius of aggregated clusters (rt) using the following
formula: tt = rt

2/(2D), where D is referred to as the surface
ionic diffusion parameter and its value is given by 3 �
10�9 m2/s as used by Tarasov and Titov [2007] and Slater
et al. [2007]. In addition, we can derive the mean radius as
rt = q5l0

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� wt

p
(see equation (A8)), where l0 is the

characteristic pore-throat radius of the system and has a
value of 1.3 � 10�4 m as determined from Thompson et al.
[1987] permeability model prior to precipitation, and q5 is
a parameter that explains the effects of differences between
the actual shape and the used sphere and the effects of
uncertainty in the values of the surface ionic parameter and

the characteristic pore-throat radius. This parameter will be
determined in the inversion with a value between 0.2 and
0.9. By combining the above two relationships, we obtain
tt = q5

2l0
2(1 � wt)/(2D) = G2(wt, q5). This is an important

relation for the estimation because it provides a linkage
between time constant and the fraction of dispersed cells.
Again, to account for uncertainty in the model, we assume
the empirical relationship is subject to relative Gaussian
random errors with the standard deviation of b3. Thus we
obtain the following model.

e3 ¼
tobst � G2ðwt; q5Þ

tobst


 Nð0;b3Þ: ð9Þ

3.4. Bayesian Model

[29] We apply the estimation framework given in section
2 to the column experimental data described by Williams et
al. [2005]. We consider volume fraction (p1, p2, . . ., pn) as
state variables and time-lapse normalized chargeability
(m1

obs, m2
obs, . . ., mn

obs) and time constant (t1
obs, t2

obs, . . ., tn
obs)

as measurements with Gaussian relative random errors. We
also consider the fraction of dispersed biominerals (w1,
w2, . . ., wn) and five time-independent parameters (q1,
q2, . . ., q5) as unknowns. We jointly estimate those state
variables and time- dependent and independent parameters
by conditioning on the inverted Cole-Cole parameters.
[30] We can specify the general Bayesian framework

given in equation (5) with the geochemical evolution model
described in section 3.2, and the complex resistivity rock-
physics model conceptually summarized in section 3.3 (and
described in detail in Appendix A) to obtain the following
specific Bayesian model for estimation of precipitate related
parameters (see Appendix B).

f ðp1; p2; � � � ; pn;w1;w2; � � � ;wn; q1; q2; � � � ;
q5jmobs

1 ;mobs
2 ; � � � ;mobs

n ; tobs1 ; tobs2 ; � � � ; tobsn Þ

/ f ðq1; q2; � � � ; q5Þf ðw1;w2; � � � ;wnÞ
Yn
t¼1

1

Bðzt; q1; q2Þ

� �

� exp � 1

2b2
1

Xn
t¼1

ðpt � pt�1Þ � Bðzt; q1; q2Þ
Bðzt; q1; q2Þ

� �2
( )

� exp � 1

2b2
2

Xn
t¼1

mobs
t � G1ðpt;wt ; q3; q4Þ

mobs
t

� �2
( )

� exp � 1

2b2
3

Xn
t¼1

tobst � G2ðwt; q5Þ
tobst

� �2
( )

: ð10Þ

[31] In equation 10, we assume p0 = 0 (i.e., no precip-
itates at time t0), b1 = 5%, b2 = 1%, and b3 = 10%. In this
model, we only take account for random measurement
errors, and systematic errors in data, model assumptions,
and parameterization cannot be resolved. However, given
the flexibility of our estimation framework, we can certainly
combine them into the model if we know the structures of
those systematic errors. To obtain samples from the joint
posterior distribution given in equation (10), we first derive
conditional distributions for unknown variables and then
use the MCMC sampling methods to obtain many samples
of the unknowns. Details about the MCMC sampling
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methods are provided by Chen et al. [2006] and in
Appendix C.

4. Estimation Using Laboratory Column
Experimental Data

4.1. Estimation of Volume Fraction
of FeS and ZnS Precipitates

[32] We first estimate volume fraction of FeS and ZnS
precipitates using only the measured acetate concentra-
tions. By dropping the last two terms on the right side of
equation (10), we can obtain the joint distribution of
evolved precipitate volume fraction as functions of the
measured acetate concentrations and the evolution model
given in equation (7). For the given evolution model
B(zt, q1, q2), we choose the prior ranges of parameters q1
and q2 on which the estimated medians of the volume
fraction have a similar range to the values calculated
from direct measurements of metal sulfide precipitates.
The estimates of volume fraction are very sensitive to the
choice of parameter q1, which is the limit or maximum
increment of volume fraction for given acetate concen-
trations. Figure 8 shows the effect of its prior range on
the estimates of volume fraction. If we assume the
maximum increment of volume fraction is in the range
of (1e � 3, 5e � 3), the estimated medians of volume
fraction (circles in Figure 8) are one order larger than
those calculated from direct measurements of dissolved
metal concentrations (triangles in Figure 8). However, if
we choose a prior range of (1e � 4, 1e � 3) for parameter
q1, we can obtain the medians of volume fraction (squares
in Figure 8) that are in the same order as those calculated
from dissolved metal concentrations. Therefore, in this
example, we assume that parameter q1 is uniformly distrib-
uted over (1e� 4, 1e� 3). The estimates of volume fraction
are less sensitive to the value of parameter q2, the increment
rate of volume fraction for given acetate concentrations. We

assume that the parameter q2 is uniformly distributed
between 1 and 10.
[33] We combine information from complex resistivity

data into the estimation using all the terms in equation (10).
The added data are normalized chargeability and time con-
stant, both of which are obtained from fitting complex
resistivity data with Cole-Cole models following Chen et al.
[2008]. In this case, we must also invert the fraction of dis-
persed cells over time and three additional time-independent
parameters q3, q4, and q5. As will be subsequently discussed,
all those parameters can be estimated well from the joint
inversion. Figure 9a shows the estimated medians of volume

Figure 8. Effects of parameters in the geochemical model
on the estimates of volume fraction.

Figure 9. (a) Estimates of volume fraction obtained using
acetate data only (squares) and using both acetate and IP data
(circles), and those calculated from the dissolved iron and
zinc concentrations (triangles); (b) 95% highest probability
domains (HPDs) obtained using acetate data only (squares)
and using both acetate and IP data (circles).
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fraction of FeS and ZnS precipitates obtained using the
acetate concentrations only (squares) and using both acetate
concentrations and complex resistivity data (circles). The
calculated volume fraction using equation (6) from the
dissolved Fe2+ and Zn2+ concentrations are also shown in
Figure 9a as triangles. Comparing the estimated and calcu-
lated volume fraction, we find that the estimates of volume
fraction of FeS and ZnS precipitates obtained using both
acetate concentration and complex resistivity data are much
better, having a root-mean-square (RMS) difference of
0.0337, relative to those using acetate concentration data
only, having a RMS value of 0.0453. Figure 9b shows the
95% highest probability domains (HPDs) of the estimated
volume fraction. We can see that combination of complex
resistivity and acetate concentration data yields only
slightly smaller uncertainty bounds. Although we include
more data in the procedure, we have also added more
unknown parameters.

4.2. Estimation of Fraction of Dispersed Cells
and Mean Radius of Aggregated Clusters

[34] We can directly estimate the fraction of dispersed
cells as a function of time as shown in equation (10) through
incorporating complex resistivity data into the inversion.
Figure 10 shows the medians of the marginal posterior
probability distribution of the fraction of the dispersed cells
and their corresponding 95% HPDs. The fraction of dis-
persed, coated cells decreases from about 90% to about 10%
from day 13 to day 48 because of aggregation of dispersed
cells into large clusters.
[35] Although we did not directly estimate the mean

radius of aggregated clusters in equation (10), we can
calculate it through the formula: rt = q5l0

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� wt

p
from

the fraction of dispersed cells and time-independent param-
eter q5. Figure 11 shows the estimated medians of the mean
radius of aggregated clusters, together with their corre-
sponding 95% HPDs. From Figure 11, we can see that the

mean radius of aggregated clusters increases as we expected
from about 10 microns to about 30 microns, which is rea-
sonable according to the observations from SEM images
of samples from the destructed experimental columns (10–
20 microns) [Williams et al., 2005].

4.3. Estimation of Permeability

[36] We can also estimate effective permeability and its
change over time in the zone impacted most significantly by

Figure 10. Estimated fraction of dispersed biominerals
over time.

Figure 11. Estimated mean radius of aggregated clusters
over time.

Figure 12. Comparison between the estimated (circles)
and measured (crosses) permeability.
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the biostimulation using the developed petrophysical model
and the complex resistivity data. Permeability is a key
parameter for flow transport and is difficult to measure in
hydrogeology. Following Thompson et al. [1987], we can
obtain permeability at time t as below:

kt ¼
1

226
ðf0ð1�PtÞðl0 � 2rtÞÞ2; ð11Þ

where Pt is the volume fraction of the pores occupied by
clusters, which is a function of both pt and wt (see
Appendix A) and typically is much larger than the fraction of
FeS and ZnS precipitates pt. Symbol f0 = 0.37 is the initial
porosity of sand grain prior to precipitation. Figure 12 shows
the medians (solid lines with circles) of the estimated per-
meability over time, together with their corresponding 95%

HPDs (dashed lines with triangles or squares). The effects of
the evolved precipitates on the effective permeability are
evident; the formation of the aggregated clusters reduces
permeability at the location from about 8 darcies to 2 darcies.
[37] To justify the estimated permeability, we compare

these results with those calculated from the measured per-
meability of sand column by Williams et al. [2005]. In the
column experiments, after the initial migration of the precip-
itation front toward the column base (influent), the micro-
bially mediated sulfide precipitation mainly occurred in the
first several centimeters of the soil column. Let ksc be the
permeability of the sand column, which is calculated from
the measured hydraulic conductivity data by Williams et al.
[2005] and has a value of 10.4 darcies before precipitation,
9.15 darcies on days 17 and 20, and 0.4 darcy on day 53. Let
vc be the volume fraction of the location where cluster

Figure 13. Estimated posterior probability density functions (pdfs) of time-independent parameters,
where priors are uniform distributions on given ranges shown on Figures 13a–13e.
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development is occurring, which is about 0.17 in the case.
Thus we have

1

ksc
¼ vc

kt
þ 1� vc

k0
; ð12Þ

where k0 is effective permeability prior to biostimulation and
has a value of 10.4 darcies. Using the available information
and equation (12), we can calculate the effective permeability
as a function of time, which is shown as solid lines with
crosses in Figure 12. Comparison between the estimated and
calculated effective permeability suggests that the developed
estimation framework and petrophysical model permit a
reasonable estimation of changes in permeability conditioned
on complex resistivity data.

4.4. Estimation of Time-Independent Parameters

[38] Figure 13 shows the marginal posterior probability
distribution functions (pdfs) of five time-independent
parameters. We show these results in order to demonstrate
an important benefit provided by Bayesian estimation
approaches. This is that they allow us to consider those
parameters in the model that we do not have enough
information as unknowns with prior ranges. The posterior
results of those parameters may or may not get informa-
tion from the data that we are conditioning to, depending on
relationships between the data and those parameters. For a
parameter, such as q1, the limit of increment of volume
fraction, whose posterior pdf is almost the same as its prior
pdf, we should generally be careful in choosing its prior
range and analyzing its effects on the estimated results.
However, in the current study, since our goal is to show the
increasing values of complex resistivity data for a given
prior model, we pick such a prior range.
[39] For parameters, such as q2, q3, q4, and q5, the choice

of prior distributions is not crucial. For example, from
Figure 13, we can see that parameter q5 is well resolved.
Even if we start from a wider prior range, we still get a
similar posterior pdf. We can use the estimated results as
calibration of the rock-physics model and apply them for
prediction. We can also gain insights from the results that
justify the developed petrophysical model.

5. Discussion and Conclusions

[40] We developed a general Bayesian framework based
on a state-space approach to estimate biogeochemical end
products using time-lapse geochemical and geophysical
data. The developed framework is very flexible, as it allows
for systematic incorporation of multisource and multiscale
information and permits use of different forms of forward
geochemical and petrophysical models.
[41] We demonstrated the utility of the developed esti-

mation framework for quantitative estimation of biogeo-
chemical parameters by applying it to geophysical and
geochemical data sets collected during laboratory column
biostimulation experiments. In the case study, we estimated
the evolution of several parameters in connection with
biostimulation-induced metal sulfide precipitates. We used
empirical relationships to link the total concentrations of
acetate to volume fraction of FeS and ZnS precipitates and
developed a novel rock-physics model based on face-

centered sphere packing to link normalized chargeability
and time constant obtained from complex resistivity data
to various time- dependent and independent parameters
related to the aggregated precipitates. We note that the
petrophysical model included within the estimation frame-
work is expected to be refined as our understanding of the
evolution of biogeochemical end products and their im-
pact on pore structures become available; this topic is a
subject of ongoing research by the authors. For testing of
the developed estimation framework, we have developed a
model that is conceptually simple and consistent with all
available observations made by Williams et al. [2005].
[42] Our results show that we can obtain quantitative

estimates of the evolution of volume fraction and several
other types of information related to the precipitation from
the time-lapse complex resistivity data using the devel-
oped Bayesian framework and the assumed petrophysical
model. The incorporation of time-lapse complex resistivity
data improves the estimates of volume fraction over the
estimates obtained using measured geochemical data alone,
and provides the estimates of dispersed cell fraction, mean
radius of aggregated clusters, and permeability, which
geochemical data alone could not provide.
[43] Estimation of biogeochemical parameters using time-

lapse geochemical and geophysical data is subject to uncer-
tainty. This may come from the choice of models for linking
geochemical and geophysical properties to parameters related
to biogeochemical end products, from the choice of prior
distributions of unknown parameters, and from the estimation
of parameters associated with the petrophysical model. To
address those uncertainties, we assume the output of models
includes Gaussian relative random errors and the associated
model parameters are uniformly distributed on given prior
ranges. The uncertainty can be reduced through two different
approaches. The first one is to incorporate multiple types and
multiple scales of information using the Bayesian integrated
approach; the other approach is to improve our understanding
of the petrophysics of precipitation through additional labo-
ratory, theoretical, and numerical experiments. Ongoing
efforts within the environmental community to advance our
understanding of petrophysical models and to incorporate
a variety of data sets for exploring system behavior are
expected to lead to improved quantitative estimates of bio-
geochemical end-product characteristics.
[44] The obvious potential of the developed framework is

its use for quantitative estimation of biogeochemical param-
eters at the field scale, using time-lapse direct borehole and
indirect geophysical data sets. Application of the developed
procedure with time-lapse geophysical data sets has the
potential to provide a wealth of information about the
spatiotemporal evolution of biogeochemical processes asso-
ciated with remedial treatments that are difficult to obtain
using borehole data alone. However, for use at the field
scale, we may need to consider state vectors and time-lapse
geophysical data as functions of the spatial variability
associated with natural heterogeneity and its controls on
geophysical and geochemical responses. We need to develop
models to characterize spatial patterns of biogeochemical
properties and geochemical and geophysical data as functions
of time.
[45] Extension of the estimation framework to the field-

scale presents other challenges as well. Different types of
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geochemical and geophysical data typically have different
measurement support scales. For example, geochemical
data are typically collected from borehole fluid samples
and are often considered to provide high-resolution ‘‘point
measurements’’, whereas geophysical data often are collected
from crosshole or surface surveys at relatively lower resolu-
tion but with larger spatial coverage. To use those data
together, we need to find ways to bridge the scale discrepan-
cies for integration and to permit development and validation
of petrophysical models. Additionally, in-situ remediation
treatments often lead to multiple and competing biogeochem-
ical reactions in the subsurface. In our case study, the column
experiments only involved the stimulation of sulfate reducing
bacteria through a use of a pure culture, which led to the
controlled precipitation of metal sulfide minerals following
the introduction of dissolved metal ions at a known concen-
tration. However, in nature many biogeochemical processes
often exist that can occur within the footprint of the geophys-
ical measurements, such as dissolution, precipitation, gas
generation, and biofilm formation. To apply the developed
approach to natural field conditions, we will likely need to
augment the Bayesian framework to distinguish the dominant
process and associated end products.
[46] Our study focused on developing and testing a sto-

chastic approach for estimating biogeochemical end products
associated with bioremediation treatments using time-lapse
geophysical laboratory data sets. This approach builds upon
recent biogeophysical research that indicated that geophys-
ical data can track system responses over time; it now allows
for quantitative estimation of transformational end products
in a minimally invasive manner. Further development and
application of the estimation framework is expected to
significantly improve our understanding of complex biogeo-
chemical processes in naturally heterogeneous subsurface
systems and our ability to monitor processes remotely. An
improved understanding and ability to monitor in-situ bio-
geochemical processes is expected to lead to an improved
ability to design, guide, predict, and assess in-situ remedia-
tion approaches at the field scale.

Appendix A: Rock-Physics Model for Cells
Aggregating Into Clusters

[47] We develop a rock-physics model in this section to
link Cole-Cole parameters (i.e., normalized chargeability
and time constant) to the properties of metal precipitates.
The derivation is mainly based on observations from the
column experiments performed by Williams et al. [2005].
[48] As shown in Figure 7, we assume that the bacterial

cells in the system produce sulfide minerals to the point that
they become covered in a sulfide layer and ultimately die. In
a highly simplified model, we assume that all sulfides in the
system reside as spherical shells around the cells; we dis-
tinguish between dispersed cells and clustered cells. Initially,
all cells with a sulfide coating are dispersed (i.e., widely
separated from one another); through time, the dispersed cells
aggregate into clusters with the form of spheres in the present
simple model. These spherical clusters grow through the
attachment of additional dispersed cells. Since an isolated
cell has a larger mineral-fluid surface area than a cell attached
to a cluster, the mineral-fluid surface area of sulfides will
decline as long as the rate of cells attaching to clusters is

greater than the rate at which new dispersed cells are being
formed. We assume this is the case in the column experi-
ments. To account for the observation that total sulfide
volume in the pores is increasing through time, we assume
that the cells in a cluster have a thicker layer of sulfides on
them than do the dispersed cells.
[49] We assume that there areNt cells with sulfides on them

in every unit volume of pore space, which are partitioned into
Nd dispersed cells and Nc clustered cells such that Nt = Nd +
Nc. The dispersed cells are coated with a sulfide layer of
thickness hdwhile the clustered cells have a sulfide layer with
thickness of hc (see Figure 7). For ease of description, we
define two time-invariant dimensionless parameters cd = hd/R
and cc = hc/R, where R is the radius of a cell without sulfides
on it. Thus we can obtain the volume of sulfides surrounding
a single dispersed cell by 4pR2hd(1 + cd + cd

2/3) and that
surrounding a coated cell within the cluster approximately by
4pR2hc(1 +cc +cc

2/3). Letwt =Nd/NT, which varies over time
and has a value between 0 and 1. Let gd = cd(1 + cd + cd

2/3)
and gc = cc(1 + cc + cc

2/3). Consequently, the fraction of pore
volume pt occupied by sulfide precipitate is given by

pt ¼ 4pNTR
3ðgdwt þ gcð1� wtÞÞ: ðA1Þ

The relationship between pt and wt given by equation (A1)
requires knowledge of the total number NT of cells per unit
pore volume covered with precipitates. Since this generally is
unknown, we consider both pt and wt as unknown parameters
that are determined by the inversion at each time step. We
subsequently express all other time-varying petrophysical
parameters required within the modeling as functions of pt
and wt.
[50] We first derive the specific surface area St, defined as

the area of sulfides in contact with water per unit pore
volume, in terms of pt and wt. Note that the number of coated
cells nc in a cluster is given by nc = (rt/R)

3(1 � fc)/(1 + cc)
3,

where fc is the porosity in a cluster. Therefore the total
number of clusters per unit volume of pore spaceMc is given
by

Mc ¼
NT � Nd

nc
¼ NT ð1� wtÞ

R

rt

� �3 ð1þ ccÞ
3

ð1� fcÞ
; ðA2Þ

and the volume fraction (Pt) of pores occupied by aggregated
clusters is given by

Pt ¼
4

3
pr3t Mc ¼

ð1þ ccÞ
3ð1� wtÞpt

3ð1� fcÞðgdwt þ gcð1� wtÞÞ
: ðA3Þ

The specific surface area St can be modeled as Nd4pR
2(1 +

cd)
2 +Mc(1� fc)4prt

2, where the first term is the surface area
associated with the individual dispersed cells and the second
term is the surface area of the clusters. Since a cluster is an
electronically conducting object, only its exterior surface
contributes to the IP effect. Thus we obtain

St ¼
ptðR�1wtð1þ cdÞ

2 þ r�1
t ð1� wtÞð1þ ccÞ

3Þ
gdwt þ gcð1� wtÞ

; ðA4Þ

where R � 0.3 � 10�6 m is the radius of a cell based on
SEM imagery described byWilliams et al. [2005]. The time-
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invariant parameters cd and cc that represent the fraction of a
cell radius occupied by sulfide are not well known.Wemodel
them as cd = 10�3q3 and cc = 10

�1q3, where q3 is a parameter
that must be determined from the inversion with allowed
values in the range between 1 and 3. The observation that
cc � 10�1 is consistent with the SEM images of cells from
clusters obtained by Williams et al. [2005].
[51] We can derive the mean radius of the cluster within

the rock-physics model in terms of pt and wt. Let nl be
the number of cells, with the radius of R(1 + cc), needed
to uniformly coat a cluster with radius of rt, where nl =
4prt

2(1 � fc)/(pR
2(1 + cc)

2), we can obtain

1

2Rð1þ ccÞ
drt

dt
¼ 1

nlMc

dNc

dt
: ðA5Þ

To understand the rate dNc/dt at which cells in clusters
are increasing, we consider the rate at which wt = Nd/NT is
changing. A change dNT occurs whenever new dispersed
cells are created (presumably, this is occurring to some
degree); a change dNd occurs both as a loss�dNc to clusters
and as a gain dNT from the newly created cells. From the
definition of the derivative, we have

d
Nd

NT

� �
¼ Nd � dNc þ dNT

NT þ dNT

� Nd

NT

: ðA6Þ

After rearranging and ignoring products of infinitesimals,
we obtain

�dNc ¼ NT dwt � ð1� wtÞ
dNT

NT

� �
� NTdwt : ðA7Þ

The second term in equation (A7) can be neglected at early
times where wt is close to one. At later time, it is expected
that the rate at which new dispersed cells is forming is much
smaller than that at which dispersed cells are attaching to
clusters. Equation (A7) should thus be a reasonable approx-
imation at all the time.
[52] We can obtain the following differential equation

that relates rt to wt from equations (A5)–(A7).

1

rt

drt

dt
¼ 1

2ð1� wtÞ
dð1� wtÞ

dt
: ðA8Þ

By solving the equation, we have rt = rmax

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� wt

p
, where

rmax is the maximum cluster size that occurs when all
dispersed cells have been deposited on clusters (wt = 0) and it
depends on NT and other parameters that are not precisely
known. Our final result is given by rt = q5l0

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� wt

p
, where l0

is the characteristic pore-throat radius in the system and has a
value of 1.3� 10�4 m and q5 is a time-independent parameter
that will be determined as part of the inversion with allowed
values in the range between 0.2 and 0.9.

Appendix B: Bayesian Model for the Column
Experiment Data

[53] The joint posterior distribution function in equa-
tion (10) combines information from the evolution model
in equation (7) and petrophysical models in equations (8)

and (9). On the basis of equation (5), we can write the
joint pdf as follows.

f ðp1; p2; � � � pt;w1;w2; � � � ;wn; q1; q2; � � � ;
q5jmobs

1 ;mobs
2 ; � � � ;mobs

n ; tobs1 ; tobs2 ; � � � ; tobsn Þ

/ f ðq1; q2; � � � ; q5Þf ðw1;w2; � � � ;wnÞ
Yn
t¼1

f ðpt jpt�1;q1; q2Þ

�
Yn
t¼1

f ðmobs
t jpt;wt; q3; q4Þ

Yn
t¼1

f ðtobst jwt ; q5Þ; ðB1Þ

where p0 = 0 and q1, q2, . . ., q5 are assumed to be uniformly
distributed on given ranges.
[54] We first derive conditional probability distribution

f(ptjpt�1, q1, q2) from the normal distribution N(0, b1) using
variable transformations, which is given by

f ðptjpt�1; q1; q2Þ

/ 1

Bðzt; q1; q2Þ

� �

� 1

b1

exp � 1

2b2
1

ðpt � pt�1Þ � Bðzt; q1; q2Þ
Bðzt ; q1; q2Þ

� �2
( ) !

ðB2Þ

Similarly, we can obtain likelihood functions of charge-
ability using variable transformations from the normal
distribution as below.

f ðmobs
t jpt;wt ; q3; q4Þ

/ 1

b2

exp � 1

2b2
2

mobs
t � G1ðpt;wt; q3; q4Þ

mobs
t

� �2
( )

; ðB3Þ

and

f ðtobst jwt ; q5Þ /
1

b3

exp � 1

2b2
3

tobst � G2ðwt; q5Þ
tobst

� �2
( )

: ðB4Þ

Combing equations (B1) to (B4), we can obtain the joint
posterior distribution given in equation (10).

Appendix C: Sampling Methods

[55] We group unknown parameters in equation (10) into
five subsets: (1) {q1, q2}, parameters related to the geo-
chemical model B(zt), (2) {q3, q4}, parameters related to
normalized chargeability, (3) q5, a parameter related to time
constant, (4) {p1, p2, . . ., pn}, the volume fraction of metal
precipitates, and (5) {w1, w2, . . ., wn}, the partition factors
of dispersed biominerals. We use block-sampling methods
[Chen et al., 2006] to obtain many samples from the joint
posterior distribution function given in equation (10). The
conditionals for those subsets are given below:

f ðq1; q2j�Þ / Indððq1; q2Þ 2 D1Þ
Yn
t¼1

1

Bðzt; q1; q2Þ

� �

� exp � 1

2b2
1

Xn
t¼1

ðpt � pt�1Þ � Bðzt; q1; q2Þ
Bðzt; q1; q2Þ

� �2
( )

;

ðC1Þ
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f ðq3; q4j�Þ / Indððq3; q4Þ 2 D2Þ

� exp � 1

2b2
2

Xn
t¼1

mobs
t � G1ðpt ;wt; q3; q4Þ

mobs
t

� �2
( )

;

ðC2Þ

f ðq5j�Þ / Indðq5 2 D3Þ exp � 1

2b2
3

Xn
t¼1

tobst � G2ðwt; q5Þ
tobst

� �2
( )

;

ðC3Þ

f ðp1; p2 � � � ; pnj�Þ

/ exp � 1

2b2
1

Xn
t¼1

ðpt � pt�1Þ � Bðzt; q1; q2Þ
Bðzt; q1; q2Þ

� �2
( )

� exp � 1

2b2
2

Xn
t¼1

mobs
t � G1ðpt;wt; q3; q4Þ

mobs
t

� �2
( )

; ðC4Þ

and

f ðw1;w2 � � � ;wnj�Þ /
Yn
t¼1

Indðwt 2 D4Þ

� exp � 1

2b2
2

Xn
t¼1

mobs
t � G1ðpt;wt; q3; q4Þ

mobs
t

� �2
( )

� exp � 1

2b2
3

Xn
t¼1

tobst � G2ðwt; q5Þ
tobst

� �2
( )

: ðC5Þ
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